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Factor analytic methods (exploratory [EFA] and confirmatory [CFA]) are integral parts of test 
development in both construction and later construct validation. Some examinations of test 
structure may originate at the item level, examining interrelationships or covariance among a 
set of items. Some examinations of test structure may originate at the subtest level, examining 
the interrelationships or covariance among a set of subtests. Yet another means of examina
tion would be to examine interrelationships or covariance among items or subtests gathered 
from multiple different measures thought to measure the same or related latent constructs. 
Determining item or subtest retention and assignment to latent dimensions is a first step in 
test construction but understanding the latent dimensions captured by a psychological test and 
evaluating their psychometric characteristics is critical for application (interpretation) once 
the test is constructed. Interpretation of a test score from a unidimensional measure is rather 
straight forward as there will be only one score to report, but interpretation of scores produced 
by a multidimensional measure is more complicated and requires thorough examination and 
understanding of the reliability and validity of each of the provided scores as well as any 
comparisons between scores. The purpose and focus of this chapter is to present and illustrate 
use of the bifactor model, which is a model that is increasingly used for understanding the 
structure of multifactor tests and assisting in determining which scores can be appropriately 
interpreted. While bifactor modeling can also be applied to item level indicators, this was re
cently well illustrated with relationships to item response theory applications by Reise (2012) 
and thus, not included as part of this chapter. The bifactor model has important implications 
for both understanding the structure of a test as well as interpretation of various scores. To fa
cilitate understanding and application of the bifactor model, comparisons are made to various 
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alternate models used to explain the interrelationships among a set of subtest indicators. Fi
nally, a research example is used to illustrate exploratory and confirmatory bifactor modeling 
with one of the most popular and frequently used intelligence tests for children, the Wechsler 
Intelligence Scale for Children-Fourth Edition (WISC-IV; Wechsler, 2003). While bifactor 
modeling has primarily been applied to intelligence tests (see Canivez, 2011, 2014a; Canivez 
& Watkins, 2010a, 2010b; Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Gignac, 2005, 
2006, 2008; Gignac & Watkins, 2013; Holzinger & Harman, 1938; Holzinger & Swineford, 
1937; Watkins, 2006, 2010), it has been applied to personality tests (see Ackerman, Donnel
lan, & Robins, 2012; Chen et al., 2012) and psychopathology tests (see Brouwer, Meijer, & 
Zevalkink, 2013), but too few researchers and many fewer clinicians are familiar with its use 
even with intelligence tests. 

Introduction/Central Issues 
Constructs and the tests designed to measure them may be unidimensional or multidimen
sional and various factor analytic methods will assist in determining whether a collection of 
indicators (items or subtests) are unidimensional or multidimensional. When a test is unidi
mensional (see Figure 12.1) the covariance among the group of indicators is associated with 
one latent factor or dimension. Essentially all indicators will be correlated with one another 
and converge on one factor. 

Multidimensional constructs and tests that reflect multiple factors allow for different ways of 
explaining relationships among the indicators and the factors or dimensions extracted (EFA) or 
specified (CFA). When multiple factors are uncorrelated or reasonably uncorrelated (r < .33; 
Tabachnick & Fidell, 2007) in oblique rotation of extracted factors, then an orthogonal rota
tion may be justified and the latent factors will be independent (uncorrelated). Interpretation 
of such orthogonal dimensions is uncomplicated, as each factor may be considered distinct 
from all the others. Figure 12.2 illustrates a structural measurement model for a hypothetical 
multidimensional test structure where the multiple latent factors are uncorrelated (orthogonal). 
However, when multiple factors are correlated (r :2: .33; Tabachnick & Fidell, 2007) in oblique 
rotations then the latent dimensions are not independent and the correlations between the mul
tiple factors must be accommodated. In this situation there are three competing measurement 
models that could represent the test structure. Model 1 in Figure 12.3 presents the measure
ment model corresponding to a correlated factors or oblique measurement model. This illus
trates the relationship between the latent factors and the indicators as well as the correlations 
between the latent factors. Interpretation of correlated factors is more complicated due to the 
shared variance among the factors. While some might like to use this structure to guide inter-

Figure 12.1. Unidimensional measurement model for a hypothetical test with 16 ob
served variables (indicators Vl-V16). 
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Figure 12.2. Orthogonal (uncorrelated) multidimensional measurement model for a 
hypothetical test with 16 observed variables (indicators Vl-V16) and four 
uncorrelated latent first-order factors. 

pretations of factor score patterns or profiles, the correlated factors obfuscate common vari
ance (Reise, 2012). However, the correlated factors (oblique) model is considered insufficient 
because correlated factors imply a higher-order or hierarchical factor or factors that must be 
explicated (Gorsuch, 1983; Thompson, 1990, 2004). 

One way to address correlated (oblique) factors is to subject the oblique factor correlation 
matrix to a higher-order factor analysis. In EFA, one may factor analyze the first-order factor 
correlation matrix and generate a higher-order factor (or factors). In CFA this higher-order 
structure is specified as part of the modeling process. Model 2 in Figure 12.3 illustrates the 
higher-order CFA structure. This measurement model has paths specified from a second-order 
factor to the first-order factors, which in turn have paths leading to the observed indicators. In 
the higher-order model the influence of the second-order factor on the observed indicators is 
indirect. McDonald (1999) referred to this model as the indirect hierarchical model, which is 
terminology that has subsequently been used by others (e.g., Canivez, 2014a; Gignac, 2008; 
Watkins, 2010). The second-order factor influence on observed indicators is fully mediated 
by the first-order factors (Yung, Thissen, & McLeod, 1999). How much influence the second
order factor has on the observed indicators is obscured and an important question regarding 
higher-order models is whether influences of a higher-order factor should be fully mediated by 
first-order factors (Gignac, 2005, 2006, 2008). 

Model 3 in Figure 12.3 illustrates the bifactor measurement model. This model is a rival to 
the higher-order model and has a general factor (analogous to the second-order factor in the 
higher-order model), which has direct paths to all the observed indicators and has specific 
group factors with direct paths to the observed indicators related to that specific factor. In the 
bifactor model both the general factor (broad) and the specific group factors/subscales (nar
row) have direct influences on the observed indicators and the specific group factors do not 
mediate the influence of the broad, general factor. In contrast to the higher-order model where 
the higher-order factor is a superordinate dimension, the bifactor model establishes the general 
dimension as a breadth dimension (Gignac, 2008; Humphreys, 1981) and can be considered 
more parsimonious (Gignac, 2006). 

In tests of intelligence such as the Wechsler Intelligence Scale for Children-Fourth Edition 
(WISC-IV, Wechsler, 2003) there are subtest scores, factor (index) scores, and an omnibus, 
Full Scale score that represent different levels of the test. When CFA procedures are applied 
the subtests are the observed indicators while the first-order factors are correlated latent di
mensions (see Figure 12.5) and the general factor implied by correlated first-order factors can 
be modeled as a higher-order latent dimension (see Figure 12.6) or as a parallel broad general 
dimension to the narrow, specific group factors (see Figure 12.7). When one concentrates 
interpretation on the individual scores (subtests or first-order factors) the influence of broad/ 
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Model 1 

Model 2 

Model 3 

Figure 12.3. Three different multidimensional measurement models for a hypothetical 
test with 16 observed variables (indicators Vl-V16) and four latent first-or
der factors. Model 1 is the oblique (correlated) factor model, Model 2 is the 
higher-order (indirect hierarchical) factor model with one higher-order (H-0) 
and four lower-order (L-0) factors, and Model 3 is the bifactor (nested factor/ 
direct hierarchical) model with one general and four specific (S) factors. 
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general construct is conflated while concentration of interpretation on an omnibus, total score 
may miss important unique contributions provided by specific facets (Chen et al., 2012). For 
individuals it is not possible to disentangle the two sources of common variance (general 
and specific group factor). The bifactor model is less ambiguous than a higher-order model 
because it simultaneously discloses effects provided by a broad, general dimension while also 
disclosing effects of narrow, specific dimensions (Chen et al., 2012; Reise, 2012). 

Conceptual Principles 

The Bifactor Model 

The bifactor model was first proposed and illustrated by Holzinger and Swineford (1937) and 
Holzinger and Harman (1938), although their method is no longer used (Jennrich & Bentler, 
2011). There are both exploratory and confirmatory approaches to bifactor modeling. Alter
nate names for the bifactor model that appear in the literature include the nested factors model 
(Gustafsson & Balke, 1993) and the direct hierarchical model (e.g., Canivez, 2014a; Gignac, 
2008, McDonald, 1999; Watkins, 2010). Gignac's original use of the term direct hierarchical 
was influenced by McDonald and relates to the direct influence of the general factor on subtest 
indicators in a bifactor model as opposed to the indirect hierarchical influence of the general 
factor on subtests mediated by first-order factors (Gignac, 2008; McDonald, 1999). 

The bifactor model offers a number of key advantages including: 
1. The general factor is easy to interpret with direct influences on indicators as this implies 

inferences directly from the subtest indicators rather than inferences from inferences (fac
tors) (or interpretations based on other interpretations) present in the higher-order model, 
which Gorsuch (1983) noted was ambiguous; 

2. Both general and specific influences on indicators (subtests) can be examined simultane
ously, which allows for judgments of general and specific group scale importance (Gor
such, 1983; Reise, 2012; Reise, More, & Haviland, 2010); 

3. The psychometric properties necessary for determining scoring and interpretation of the 
general dimension and subscales may be examined (i.e., model based reliability using 
Omega-hierarchical and Omega-subscale [Reise, 2012; Zinbarg, Yovel, Revelle, & Mc
Donald, 2006]); and 

4. Unique contributions of the general and specific group factors in predicting external crite
ria or variables may be assessed (Chen et al., 2012; Chen, West, & Sousa, 2006; Gignac, 
2006, 2008; Reise et al., 2010). 

Exploratory Bifactor Model 

The exploratory bifactor model has historically and most frequently been estimated by the 
Schmid and Leiman (1957) orthogonalization procedure (Jennrich & Bentler, 2011; Reise, 
2012). The Schmid-Leiman (SL) procedure transforms "an oblique factor analysis solution 
containing a hierarchy of higher-order factors into an orthogonal solution which not only pre
serves the desired interpretation characteristics of the oblique solution, but also discloses the 
hierarchical structuring of the variables" (Schmid & Leiman, 1957, p. 53). It is a reparameteri
zation of a higher-order model (Reise, 2012). Thus, subtest or indicator common variance is 
apportioned first to the higher-order factor and the residual common variance is then appor
tioned to the lower-order factors. This solution, "not only preserves the desired interpretation 
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characteristics of the oblique solution, but also discloses the hierarchical structuring of the 
variables" (Schmid & Leiman, 1957, p. 53). It is this feature that led Carroll (1995) to insist on 
SL orthogonalization of higher-order models: 

I argue, as many have done, that from the standpoint of analysis and ready interpretation, results 
should be shown on the basis of orthogonal factors, rather than oblique, correlated factors. I insist, 
however, that the orthogonal factors should be those produced by the Schmid-Leiman ( 1957) orthog
onalization procedure, and thus include second-stratum and possibly third-stratum factors. (p. 437) 

Procedurally the first step in the traditional method of exploratory bifactor modeling is con
ducting an exploratory factor analysis (principal factors) of the subtests or indicators using 
an oblique rotation. Following the oblique rotation a second-order exploratory factor analy
sis of the first-order factor correlation matrix would be conducted. Next the Schmid-Leiman 
transformation would be applied to apportion subtest or indicator variance to the higher-order 
dimension and the lower-order specific group factors. The MacOrtho program produced by 
Watkins (2004) is available for Mac and Windows OS and is perhaps the easiest to use and is 
based on the instructions provided by Thompson (2004). MacOrtho is available as freeware 
from http://www.edpsychassociates.com. Thompson (1990) also described this procedure and 
SPSS syntax is also provided in Thompson (2004 ). Wolff and Preising (2005) also provided 
SPSS and SAS syntax code for the SL procedure. From the MacOrtho results, which provide 
orthogonal standardized coefficients of subtest or indicator loadings with the higher-order and 
lower-order factors, one may square the loadings to yield variance estimates (see Table 12.3). 
Results then disclose the portions of subtest or indicator variance associated with the general 
higher-order factor and the variance associated with the specific first-order factor. In this ex
ploratory bifactor solution subtest variance attributable to alternate first-order factors will also 
be disclosed (i.e., cross-loadings). 

While the SL procedure is the most commonly used method for estimating an exploratory bi
factor model it is not without some potential limitations. As pointed out by Yung et al. (1999) 
and others (Chen et al., 2006; Reise, 2012) the SL transformation of a higher-order model 
includes a proportionality constraint of general and specific variance ratios. Reise (2012) also 
noted that nonzero cross-loadings are problematic and the larger the cross-loadings the greater 
the distortion of overestimating general factor loadings and underestimating specific group 
factor loadings. Such cross-loadings might suggest problems with the scale content, however. 
As stated by Brunner, Nagy, and Wilhelm (2012): 

The proportionality constraint limits the value of the higher order factor model in providing insights 
into the relationship between general and specific abilities, on the one hand, and other psychological 
constructs, sociodemographic characteristics, or life outcomes, on the other. (p. 811) 

However, how prevalent this is with real data is as yet unknown (Jennrich & Bentler, 2011) 
and it is possible that this issue may be more theoretical than real. Bifactor models, however, 
do not suffer from such proportionality constraints. 

Recently, several exploratory bifactor modeling alternatives have been developed. Jennrich 
and Bentler (2011) reported on the development of an exploratory bifactor analysis using 
an orthogonal bifactor rotation criterion and related it to the SL procedure while Jennrich 
and Bentler (2012) reported on the development of an exploratory bifactor analysis using an 
oblique bifactor rotation criterion. These will likely be the topic of comparative research in 
the coming years and may offer useful alternatives to the SL procedure. Finally, Reise, Moore, 
and Maydeu-Oliveres (2011) developed and evaluated a target bifactor rotation method. These 
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three exploratory bifactor methods avoid the proportionality constraints of the SL procedure 
applied to higher-order models. Dombrowski (2014b) compared EFA results from the SL pro
cedure and the exploratory bifactor analysis (Jennrich & Bentler, 2012) and found similar 
results suggesting Reise et al. (2010) may be correct that proportionality constraint may be 
inconsequential with real data. 

Confirmatory Bifactor Model 

To provide evaluation of competing structural models in explaining the latent dimensions of an 
instrument, CFA procedures are used. In CFA, specific plausible theoretical structural models 
are examined to evaluate fit to data. When specifying a bifactor model, paths or associations 
from the broad general dimension are included to all subtest indicators and paths or associa
tions from specific group dimensions are included to theoretically related subtest indicators. 
Thus, each subtest indicator will have one path from its specific group factor and one path from 
the broad general factor (see Model 3, Figure 12.3 and Figure 12.7). This is in contrast to the 
higher-order model where the specified model has specific group factor paths to related subtest 
indicators while the higher-order general factor has paths to each of the specific group factors 
(see Model 2, Figure 12.3 and Figure 12.6). Chen et al. (2012) also noted an advantage of the 
bifactor model in that when there were only two indicators a bifactor model may be applied but 
higher-order models require at least three indicators. Yung et al. (1999) noted that differences 
between the bifactor model and the higher-order model have a qualitative distinction that may 
also be quantitatively evaluated using a x2 difference test. Thus it is possible to evaluate which 
model provides the better explanation and determine whether the latent structure should illus
trate the broad general dimension as a breadth factor (Humphreys, 1981) or as a superordinate 
factor. 

Standardized coefficients produced by the CFA that are estimated for the paths from the gen
eral dimension to the subtest indicators and those estimated for the paths from the specific 
group factors to the subtest indicators are analogous to the similar coefficients produced by the 
SL transformation (see Table 12.5). However, in the case of CFA, the absence of paths from 
alternate specific group factors to subtest indicators not associated with that factor means they 
are fixed to zero even though in reality they may be small (and possibly moderate) nonzero 
values. Procedures such as Bayesian SEM (Golay, Reverte, Rossier, Favez, & Lecerf, 2013) 
or exploratory SEM (Asparouhov & Muthen, 2009) may assist with this issue by estimating 
small, nonzero path coefficients. The standardized path coefficients from the CFA bifactor 
model may be illustrated as in Table 12.5, which is similar to those in Table 12.3 produced by 
the SL transformation, but as illustrated in Table 12.5 there are no coefficients for subtests on 
rival or alternate specific group factors (these are set to zero). Similar to Table 12.3 the stand
ardized coefficients may be squared to provide variance estimates for the broad general factor 
and the specific group factors. 

Model-Based Reliability Estimates 

In psychometrics is it common for reliability to be estimated by coefficient alpha, KR-20, or 
Spearman-Brown corrected split-half correlations. Chen et al. (2012) however, noted that "for 
multidimensional constructs, the alpha coefficient is complexly determined, and McDonald's 
omega-hierarchical (w

11
; 1999) provides a better estimate for the composite score and thus 

should be used" (p. 228). Bifactor (nested, direct hierarchical) models are prime examples 
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where the variance of each observed measure is complexly determined and "omega hierarchi
cal is an appropriate model-based reliability index when item response data are consistent with 
a bifactor structure" (Reise, 2012, p. 689). The same may be applied when subtests are the in
dicators. A prerequisite to using omega is a well-fitting, completely orthogonal bifactor model. 
While calculating decomposed variance estimates for SL transformed higher-order structures 
or bifactor models is common, calculation of omega is not, but is increasing (see Canivez, 
2014a; Canivez & Watkins, 2010a, 2010b; Dombrowski, 2014a). 

The value of omega is that it may assist in helping determine which composite scales possess 
sufficient reliable variance to be interpreted. As originally created, omega ( w) is a model based 
reliability estimate that combines higher-order and lower-order factors (Brunner et al., 2012; 
Zinbarg, Revelle, Yovel, & Li, 2005; Zinbarg et al., 2006). However, in the case of a bifactor 
model it is necessary to separately estimate the reliability of the broad general dimension as 
well as the specific group dimensions with the influences of the others removed. Omega
hierarchical ( wh) is the model based reliability estimate of one target construct with others 
removed (Brunner et al., 2012; McDonald, 1999; Zinbarg et al., 2005; Zinbarg et al., 2006). 
Reise (2012) used this same approach, but in order to provide greater specificity, provided a 
slightly different name when applied to the specific group factors. 

Omega-subscale (w) is the model based reliability estimate of one specific group factor with 
all other group and general factors removed (Reise, 2012). Omega estimates (wh and w) may 
be obtained from either CPA-based bifactor solutions or EPA SL-based bifactor solutions. 
Watkins (2013) created the Omega program to easily calculate these estimates (freeware avail
able for Mac and Windows OS at http://www.edpsychassociates.com). Examination and eval
uation of wh and W

8 
will assist the researcher and clinician in determining if there is sufficient 

reliable variance associated with the broad general dimension and the specific group factors. 
It is possible that a multidimensional instrument could have a very high wh coefficient but low 
W

8 
coefficients that would indicate primary unidimensionality, but it is also possible that an 

instrument might have a somewhat lower wh coefficient and much larger W
8 

coefficients that 
would indicate greater importance of the specific group factors. It has been suggested that 
omega coefficients should exceed .50 at a minimum, but .75 would be preferred (Reise, 2012; 
Reise, Bonifay, & Haviland, 2013). 

Research Examples 
To illustrate the use of bifactor modeling in comparison to other models using exploratory and 
confirmatory approaches, a data set that was the basis for a recently published study utilizing 
bifactor modeling (Canivez, 2014a) was used. This data set includes Wechsler Intelligence 
Scale for Children-Fourth Edition (WISC-IV; Wechsler, 2003) scores from clinical evalua
tions of children referred for learning difficulties in one medium size public school district. 
The sample of 345 children between the ages of 6 and 16 years had complete data for all 10 
WISC-IV core subtests necessary for producing the global PSIQ and the four factor index 
scores (Verbal Comprehension [VC], Perceptual Reasoning [PR], Working Memory [WM], 
Processing Speed [PS]). Pearson product-moment correlations and descriptive statistics are 
presented in Table 12.1 to illustrate the subtest interrelationships and that subtest scores were 
normally distributed. EPA is a method of extracting latent factors from the correlation matrix 
of the indicators and allow "the data to speak for themselves" (Carroll, 1995, p. 436) while 
CPA is a method of proposing various theoretical measurement models and empirically testing 
which fits data best. Gorsuch (1983) noted greater confidence in the latent structure of a test 
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when both EFA and CFA were in agreement. Carroll (1995) and Reise (2012) noted that EFA 
procedures are particularly useful in suggesting possible models to be tested in CFA. What fol-
lows are EFA and CFA illustrating application of bifactor solutions in understanding the latent 
structure of the WISC-IV with the referred sample of 345 children. 

Table 12.1. Pearson correlations and descriptive statistics for Wechsler Intelligence 
Scale for Children-Fourth Edition (WISC-IV) core subtests with a referred 
sample (N = 345) 

Subtest BD SI DS PCn CD VO LN MR co SS 

Block Design 
(BD) 

Similarities (SI) .539 

Digit Span (DS) .397 .386 

Picture .501 .489 .368 
Concepts (PCn) 

Coding (CD) .257 .242 .217 .313 

Vocabulary .503 .732 .417 .467 .267 
(VO) 

Letter-Number .462 .439 .459 .470 .291 .560 
Sequencing 
(LN) 

Matrix .701 .517 .393 .507 .295 .555 .511 
Reasoning (MR) 

Comprehension .426 .643 .404 .484 .342 .723 .499 .462 
(CO) 

Symbol Search .518 .423 .383 .399 .511 .472 .428 .515 .428 
(SS) 

M 7.660 7.840 7.590 9.080 7.550 7.380 7.310 8.320 8.090 7.850 

50 3.251 2.928 2.909 3.203 2.724 2.969 3.221 3.090 2.812 3.271 

5k 0.270 0.513 0.310 -0.279 0.123 0.453 -0.211 0.188 -0.180 -0.269 

K -0.389 0.255 0.295 -0.256 -0.081 0.517 -0.520 0.037 0.079 -0.551 

Note. 5k =skewness; K =kurtosis. Mardia's (1970) multivariate kurtosis estimate was 1.17. 

Example 1: Exploratory Bifactor Analysis With the SL Method 

Principal axis (principal factors) EFA (SPSS v. 21) produced a Kaiser-Meyer-Olkin measure 
of sampling adequacy coefficient of .894 (exceeding the .60 criterion; Tabachnick & Fidell, 
2007) and Bartlett's Test of Sphericity was 1,663.05, p < .0001, indicating that the correlation 
matrix was not random. Communality estimates ranged from .337 to .994 (Mdn = .666). Giv
en the communality estimates, number of variables, and factors, the sample size was judged 
adequate for factor analytic procedures (Fabrigar, Wegener, MacCallum, & Strahan, 1999; 
Floyd & Widaman, 1995; MacCallum, Widaman, Zhang, & Hong, 1999). Multiple criteria 
as recommended by Gorsuch (1983) were examined and included eigenvalues> l (Guttman, 
1954), visual scree test (Cattell, 1966), standard error of scree (SEscree; Zoski & Jurs, 1996) 
as recommended by Nasser, Benson, and Wisenbaker (2002) and programmed by Watkins 
(2007), Horn's parallel analysis (HPA; Horn, 1965) as programmed by Watkins (2000) with 
100 replications (see Figure 12.4), and minimum average partials (MAP; Velicer, 1976) using 
the SPSS code supplied by O'Connor (2000). All criteria indicated only one factor should be 
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Figure 12.4. Scree plots for Horn's parallel analysis for the 10 WISC-IV core subtests 
with a referred sample (N = 345). 

extracted (illustrating the dominance of the general intelligence dimension) but theory sug
gested four latent first-order factors (VC, PR, WM, PS). 

To explore and illustrate the WISC-IV multidimensional structure, four factors were extracted 
and obliquely rotated with promax (k = 4; Gorsuch, 2003). Results are presented in Table 12.2 
and show that when four factors were extracted to be consistent with the underlying theory, 9 
of the 10 WISC-IV core subtests demonstrated salient factor pattern coefficients (:2.:: .30; Child, 
2006) on the theoretically consistent factor but one salient cross-loading on an alternate factor 
was observed (Symbol Search). The Picture Concepts subtest did not have a salient coefficient 
on any of the four factors although its highest factor pattern coefficient was on the theoreti
cally consistent factor (PR). Symbol Search, however, had its highest pattern coefficient on a 
theoretically inconsistent factor (PR) that was slightly higher than the pattern coefficient on its 
theoretically consistent factor (PS). These anomalies are likely due to sampling error as such 
findings are rarely obtained. Of greater importance, however, are the correlations between the 
four extracted factors (see Table 12.2). The moderate to high factor correlations (.398 to .729) 
imply a higher-order or hierarchical factor that requires explication (Gorsuch, 1983; Thomp
son, 1990, 2004) and thus ending analyses at this point is premature for full understanding of 
the WISC-IV structure. 

The four first-order factors were then orthogonalized using the Schmid and Leiman (SL, 1957) 
procedure as programmed in the MacOrtho computer program (Watkins, 2004 ), which uses 
the procedure described in Thompson (1990). Carroll (1995) insisted that correlated factors 
be orthogonalized by the SL procedure and, as stated by Schmid & Leiman (1957), this trans
forms: 

An oblique factor analysis solution containing a hierarchy of higher-order factors into an orthogonal 
solution which not only preserves the desired interpretation characteristics of the oblique solution, 
but also discloses the hierarchical structuring of the variables. (p. 53) 



Table 12.2. Factor pattern and structure coefficients from principal axis extraction of four WISC-IV factors with promax (k = 4) rotation 
and factor correlations 

Subtest g• vc 
Similarities .757 .839 

Vocabulary .812 .852 

Comprehension .746 .784 

Block Design .747 -.028 

Picture Concepts .643 .192 

Matrix Reasoning .748 .042 

Digit Span .548 .084 

Letter-Number Sequencing .695 -.002 

Coding .507 -.014 

Symbol Search .655 .061 

Eigenvalue 5.134 

variance% 47.889 

Factor correlation matrix 

vc 1 

PR .689 

WM .729 

PS .398 

Factor pattern coefficients 

PR 

.183 

-.021 

-.133 

.972 

.281 

.690 

.123 

-.005 

-.040 

.356 

.990 

8.826 

1 

.701 

.422 

WM 

-.169 

.093 

.120 

-.062 

.216 

.123 

.428 

.839 

-.046 

.120 

.727 

2.936 

1 

.467 

Factor structure coefficients 

PS vc PR WM PS 

-.042 .826 .625 .552 .291 

-.049 .886 .611 .676 .325 

.076 .810 .524 .634 .388 

-.056 .575 .886 .573 .315 

.055 .566 .589 .579 .352 

-.013 .602 .800 .631 .353 

-.015 .474 .474 .568 .270 

-.049 .587 .562 .812 .341 

1.037 .339 .357 .401 .994 

.315 .520 .615 .561 .546 

.806 

5.387 

1 

Note. WISC-IV= Wechsler Intelligence Scale for Children-Fourth Edition; g =General Intelligence; VC =Verbal Comprehension; PR= Perceptual Reasoning; WM= Work
ing Memory; PS= Processing Speed. WISC-IV factors listed in order most commonly presented although the PS factor accounted for somewhat greater variance than 
the WM factor in this sample. Salient factor pattern coefficients presented in bold. Factor pattern coefficients in italics denote salient loading on alternate factor than 
theoretically proposed. 
•Factor structure coefficients from first unrotated factor (g-loadings} are correlations between the subtest and the general factor. 
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In order to enter appropriate data into the program it was necessary to first perform a second
order factor analysis of the four WISC-IV factors correlation matrix (presented in Table 12.2). 
The extraction of one factor from the four factors correlation matrix produced communalities 
from the second-order solution and factor structure coefficients for the second-order solution. 
The Schmid-Leiman (SL) procedure uses the first-order factor pattern coefficients matrix, 
second-order communalities, and second-order coefficients to apportion subtest variance to 
the higher-order, first-order, or to the subtest (specific and error variance). The resulting set of 
SL coefficients (b) and their variance (Var) estimates (b2

) from the present WISC-IV analyses 
are presented in Table 12.3. Thus, both the multidimensionality of subtests (associations with 
the four latent dimensions) and the huge influence of the general dimension are illustrated. 
In this specific case, as frequently observed in measurement of intelligence, most reliable 
common subtest variance is apportioned to or associated with the broad, general dimension 
(general intelligence [g]) and substantially less apportioned to the narrow, specific (group) di
mensions (Bodin, Pardini, Burns, & Stevens, 2009; Canivez, 2008, 2011, 2014a; Canivez, Ko
nold, Collins, & Wilson, 2009; Canivez & Watkins, 2010a, 2010b; Dombrowski, 2013, 2014a, 
2014b; Dombrowski & Watkins, 2013; Dombrowski, Watkins, & Brogan, 2009; Gignac, 2005, 
2006; Gignac & Watkins, 2013; Golay & Lecerf, 2011; Golay et al., 2013; Nelson & Canivez, 
2012; Nelson, Canivez, Lindstrom, & Hatt, 2007; Nelson, Canivez, & Watkins, 2013; Niileks
sela, Reynolds, & Kaufman, 2013; Watkins, 2006; Watkins, 2010, Watkins & Beaujean, 2014; 
Watkins, Canivez, James, Good, & James, 2013; Watkins, Wilson, Kotz, Carbone, & Babula, 
2006). Without applying a method such as the SL procedure to apportion subtest variance there 
is no way to know how much subtest variance is associated with the first-order group factor 
and how much is really associated with a more general, hierarchical/higher-order factor. 

Another interesting difference between results from the first-order oblique solution and the SL 
results in the present data analyses relates to the two subtests that failed to conform to theo
retical expectations in the oblique four-factor model. With regard to Picture Concepts, the SL 
apportionment of 36.7% of its reliable variance to the general dimension was reasonable and 
the largest portion of residual reliable variance, albeit small at 2.6%, was with its theoretically 
consistent factor (PR). With regard to the Symbol Search subtest, after apportioning 37% of 
its reliable variance to the general dimension it no longer had its highest coefficient on the 
PR factor. Symbol Search had a higher portion of residual reliable variance apportioned to its 
theoretically consistent specific group factor (PS). 

One final important analysis relates to the estimates of reliability of latent factors and the extent 
to which specific group factors are interpretable. In order for scales to be interpretable they must 
have appreciable true score variance. Most tests report coefficients alpha or other similar meth
ods (split-half) for estimating the internal consistency of scores but there has been significant 
criticism of this index in multidimensional measures and alternative model based reliability es
timates have been promoted (Chen et al., 2012; Schweizer, 2011; Sijtsma, 2009; Yang & Green, 
2011 ). Omega-hierarchical ( wh) and omega-subscale ( w) are more appropriate indicators of pro
portion of reliable variance attributable to the latent construct (Zinbarg et al., 2006). Table 12.3 
also presents wh and w s estimates for the present WISC-IV data set based on the SL coefficients. 

Omega hierarchical (wh) coefficient presented in Table 12.3 provided an estimate of the reli-· 
ability of the latent general intelligence construct with the effects of other constructs removed 
as programmed by Watkins (2013) based on the tutorial by Brunner et al. (2012) who used for
mulae provided by Zinbarg et al. (2006). The wh coefficient for general intelligence (.827) was 
high and sufficient for interpretation. Omega subscale (ws) coefficients for the four WISC-IV 
indexes presented in Table 12.3 estimated the scale reliabilities with the effects of the general 
factor and other group factors removed and ranged from .128 (WM) to .428 (PS). These results 



Table 12.3. Sources of variance in the Wechsler Intelligence Scale for Children-Fourth Edition for the referred sample (N = 345) according 
to an orthogonalized (Schmid & Lei man, 1957) higher-order factor model 

General vc PR WM PS 

Subtest b Var b Var b Var b Var b Var h2 u2 

Similarities .676 .457 .469 .220 .106 .011 -.082 .007 -.036 .001 .696 .304 

Vocabulary .746 .557 .477 .228 -.012 .000 .045 .002 -.042 .002 .788 .212 

Comprehension .685 .469 .439 .193 -.077 .006 .058 .003 .065 .004 .675 .325 

Block Design .688 .473 -.016 .000 .561 .315 -.030 .001 -.048 .002 .792 .208 

Picture Concepts .606 .367 .107 .011 .162 .026 .104 .011 .047 .002 .418 .582 

Matrix Reasoning .700 .490 .023 .001 .398 .158 .059 .003 -.011 .000 .653 .347 

Digit Span .537 .288 .047 .002 .071 .005 .207 .043 -.013 .000 .339 .661 

Letter-Number Sequencing .704 .496 -.001 .000 -.003 .000 .405 .164 -.042 .002 .661 .339 p 
Coding .426 .181 -.008 .000 -.023 .001 -.022 .000 .859 .738 .920 .080 r 
Symbol Search .608 .370 .034 .001 .205 .042 .058 .003 .271 .073 .490 .510 n 
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indicated that in the present sample the four specific WISC-IV group factors possessed too 
little reliable variance for clinicians to confidently interpret (Reise, 2012; Reise et al., 2013). 

Example 2: Confirmatory Bifactor Analysis 
The present data set was used in the CFA study recently published (Canivez, 2014a). In the 
CFA approach various measurement models that are theoretically possible explanations for 
the covariance among indicators are specified and compared. With respect to the WISC-IV, 
theoretical and historical structures that have evolved have included a unidimensional (general 
intelligence) model, a two-factor model (verbal and performance), three-factor model (ver
bal comprehension, perceptual organization, freedom from distractibility), and a four-factor 
model (verbal comprehension, perceptual reasoning, working memory, processing speed). The 
two-, three-, and four-factor models all have correlated factors so examination of higher-order 
and bifactor models that account for the correlated first-order dimensions are also needed. 

Table 12.4 presents results of 6 different hypothesized measurement models for the 10 core 
WISC-IV subtests as estimated in EQS, Version 6.2 (Bentler & Wu, 2012), using maximum 
likelihood estimation. Because the WM and PS factors are estimated by only two indicators 
(i.e., just identified) the two subtests were constrained to be equal in the bifactor model to en
sure specification. Results showed increasingly better fit from one to four factors but the one-, 
two-, and three-factor models did not achieve good fit (CFI > .95 and/or RMSEA < .06) to these 
data and were judged inadequate. Of the four first-order models the four oblique factor model 
was the best fitting and is illustrated in Figure 12.5. Because these four factors are highly corre
lated, a higher-order or hierarchical structure is implied and must be explicated (Gorsuch, 1983, 
2003; Thompson, 1990, 2004). While chi-square difference tests found the bifactor model to be 
a statistically better fit to these data than the four oblique factor model (~X2 = 10. 72, ~df = 2, 
p < .01) and the higher-order model (~X2 = 14.33, ~df = 4, p < .01), meaningful differences in 
fit statistics based on criteria from Cheung and Rensvold (2002; ~CFI > .01) and Chen (2007; 
~RMSEA > -.015) were not observed. AIC estimates also indicated the bifactor model to be 
best of all tested models. Based on Hu and Bentler's (1998, 1999) dual criteria, both the bifactor 
model and the higher-order model were well-fitting models. 

Table 12.4. CFA fit statistics for the Wechsler Intelligence Scale for Children-Fourth Edi
tion among 345 children 

RMS EA 
Model CFI RMS EA 90%CI AIC 

One factor 256.47 35 .865 .136 [.120, .151] 186.47 

Two oblique factors (V & NV) 159.16* 34 .924 .103 [.087, .120] 91.16 

Three oblique factors (VC, PR, [WM+PS]) 111.91 * 32 .951 .085 [.068, .102] 47.91 

Four oblique factors (VC, PR, WM, PS) 65.30* 29 .978 .060 [.041, .080] 7.30 

Higher-Order (Indirect hierarchical) 68.91 31 .977 .060 [.041, .079] 6.91 

Bifactor (Direct hierarchical)a 54.58** 27 .983 .054 [.033, .075] .58 

Note. V =Verbal; NV= Nonverbal; VC =Verbal Comprehension; PR= Perceptual Reasoning; WM= Working 
Memory; PS= Processing Speed; CFI =comparative fit index; RMSEA =root mean square error of approxima
tion; AIC = Akaike information criterion. 
aTwo indicators of WM and PS factors were constrained to be equal to ensure identification. 
*Statistically different (p < .001) from previous model. "Statistically different (p < .001) from previous two 
models. In the Wechsler four factor first-order model, correlation between: VC and PR= .75, VC and WM= 
.79, VC and PS= .57, PR and WM= .81, PR and PS= .67, and WM and PS= .64. 
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Figure 12.5. Oblique (correlated) four-factor measurement model, with standardized 
coefficients, for the Wechsler Intelligence Scale for Children-Fourth Edition 
{Wechsler, 2003) for 345 referred children; SI = Similarities, VO = Vocabu
lary, CO= Comprehension, BD = Block Design, PCn = Picture Concepts, MR 
=Matrix Reasoning, DS = Digit Span, LN = Letter-Number Sequencing, CD 
=Coding, and SS= Symbol Search, VC =Verbal Comprehension factor, PR= 
Perceptual Reasoning factor, WM =Working Memory factor, PS = Process
ing Speed factor. 
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Figure 12.6. Higher-order (indirect hierarchical) measurement model, with standard
ized coefficients, for the Wechsler Intelligence Scale for Children-Fourth 
Edition (Wechsler, 2003) for 345 referred children; SI= Similarities, VO= Vo
cabulary, CO= Comprehension, BD = Block Design, PCn = Picture Concepts, 
MR= Matrix Reasoning, DS = Digit Span, LN =Letter-Number Sequencing, 
CD =Coding, and SS =Symbol Search, VC =Verbal Comprehension factor, 
PR= Perceptual Reasoning factor, WM =Working Memory factor, PS= Pro
cessing Speed factor, g =General Intelligence. 
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.42 

Figure 12.7. Bifactor (nested factors/direct hierarchical) measurement model, with 
standardized coefficients, for the Wechsler Intelligence Scale for Children
Fourth Edition (Wechsler, 2003) for 345 referred children; SI= Similarities, 
VO =Vocabulary, CO = Comprehension, BD = Block Design, PCn = Picture 
Concepts, MR = Matrix Reasoning, DS = Digit Span, LN = Letter-Number 
Sequencing, CD = Coding, and SS = Symbol Search, VC =Verbal Compre
hension factor, PR = Perceptual Reasoning factor, WM =Working Memory 
factor, PS= Processing Speed factor, g =General Intelligence. 



Table 12.5. Sources of variance in the Wechsler Intelligence Scale for Children-Fourth Edition for the referred sample (N = 345) according 
to the bifactor (nested factor/direct hierarchical) model 

Subtest 

Similarities 

Vocabulary 

Comprehension 

Block Design 

Picture Concepts 

Matrix Reasoning 

Digit Span 

Letter-Number Sequencing 

Coding 

Symbol Search 

% Total variance 

% Common variance 

General 

b 

.691 

.742 

.675 

.708 

.663 

.741 

.561 

.692 

.405 

.652 

Var 

.477 

.551 

.456 

.501 

.440 

.549 

.315 

.479 

.164 

.425 

43.6 

71.6 

Wh= .843 

b 

.417 

.525 

.423 

vc 

6.3 

10.3 

Var 

.174 

.276 

.179 

w,= .259 

b 

.605 

.052 

.290 

PR 

4.5 

7.4 

Var 

.366 

.003 

.084 

W
5
= .140 

b 

.281 

.254 

WM 

1.4 

2.4 

Var 

.079 

.065 

W
5
= .098 

b 

.545 

.454 

PS 

5.0 

8.3 

Var 

.297 

.206 

h2 

.651 

.826 

.635 

.867 

.442 

.633 

.394 

.543 

.461 

.631 

60.8 

100 

u2 

.349 

.174 

.365 

.133 

.558 

.367 

.606 

.457 

.539 

.369 

39.2 

Note. b =Standardized loading of subtest on factor; Var= variance (b2} explained in the subtest; h2 =communality; u2 =uniqueness; VC =Verbal Comprehension; PR= 
Perceptual Reasoning; WM= Working Memory; PS= Processing Speed; wh =Omega Hierarchical; W

5 
=Omega Subscale. 
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To understand differences between the higher-order model (Figure 12.6) and the bifactor mod
el (Figure 12.7) it is useful to compare the two rival measurement models. The standardized 
measurement model for the higher-order model in Figure 12.6 illustrates high standardized 
path coefficients from the first-order factors to their subtest indicators as well as the high 
standardized path coefficients from the higher-order general factor to each of the four first
order factors. In this model the general factor has no direct effects on the subtest indicators. 
Rather, influence of the general factor on the subtests is fully mediated through the first-order 
factors and thus its influence on subtest indicators obfuscated. The standardized path coeffi
cients form the first-order factors to the subtests include both the direct influence from the first
order factor and mediated influences from the second-order factor. Another conceptualization 
for this model is that the subtest indicators are observed variables while the first-order factors 
are inferred from them. First-order factors are, in a sense, abstractions from the observed vari
ables. The same may be said about the second-order factor in that it is an abstraction from the 
first-order factors due to their correlated nature. Thus, the second-order factor is an abstraction 
from abstractions (Thompson, 2004) ! As such it is difficult to know just what a second-order 
factor is or means. 

The standardized measurement model for the bifactor model (Figure 12.7), however, has high 
standardized path coefficients from the general factor to the 10 subtest indicators but signifi
cantly lower standardized path coefficients from the four specific group factors to their subtest 
indicators than observed in the higher-order model. Thus, both the general factor and the spe
cific group factors independently directly influence subtest performance. Standardized path 
coefficients in Figure 12.7 show that in most instances the general factor has greater influence 
on subtest performance and the specific group factors generally have less influence. In contrast 
to the higher-order model above, both the general factor and the specific group factors are 
inferred from the subtest indicators. 

To fully understand the psychometric properties of the bifactor model for this data set, Table 
12.5 presents the sources of variance for the referred sample in the WISC-IV. Table 12.5 il
lustrates that the proportions of variance from the subtests accounted for by the general factor 
and the specific factors. The general factor accounted for 71.6% of the common variance while 
the specific VC, PR, WM, and PS factors accounted for 10.3%, 7.4%, 2.4%, and 8.3% of the 
common variance, respectively. The general factor accounted for 43.6% of the total variance 
while the specific VC, PR, WM, and PS factors accounted for 6.3%, 4.5%, 1.4%, and 5.0% of 
the total variance, respectively. Thus, as observed in the exploratory bifactor model prescribed 
by the SL transformation, the general factor accounted for substantially greater portions of 
WISC-IV common and total variance relative to the specific group factors. 

One final important analysis relates to the reliability estimates of latent factors and the extent 
to which specific group factors are interpretable. In order for scales to be interpretable they 
must have appreciable true score variance. Most tests report coefficients alpha for estimating 
the internal consistency of scores but significant criticism of this index was previously noted. 
Omega-hierarchical (u\) and omega-subscale (w

8
) are more appropriate indicators of propor

tion of reliable variance attributable to the latent construct. Table 12.5 also presents wh and ws 
estimates for the present WISC-IV data set CPA bifactor solution. 

Omega hierarchical ( wh) coefficients presented in Table 12.5 provided estimates of the reliabil
ity of the latent constructs with the effects of other constructs removed. In the case of the four 
WISC-IV factor indexes, ws coefficients estimated the scale reliabilities with the effects of the 
general and other group factors removed and ranged from .098 (WM) to .330 (PS) which were 
lower but similar to those obtained from the EPA based SL procedure. These results indicate 
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that in the present sample the general factor possessed sufficient reliable variance for interpre
tation but the four specific WISC-IV factors possessed too little reliable variance to interpret 
(Gignac & Watkins, 2013; Reise, 2012; Reise et al., 2013). 

Taken together both EFA and CFA based bifactor models provided substantial support for the 
WISC-IV general intelligence dimension and while the WISC-IV reflects a multidimensional 
structure for its subtests it is nevertheless dominated by the general factor. The bifactor model 
provides a more parsimonious explanation (Gignac, 2006) and this structure seems more con
sistent with Spearman's (1904, 1927) conceptualization of general intelligence, which is also 
at the core ofWechsler's (1939, 1958) definition of intelligence (global capacity). Further, the 
dominance of the general intelligence dimension and low portions of reliable specific group 
factor variance provided by the four WISC-IV specific group factors (VC, PR, WM, PS) is 
a likely cause for the substantial predictive validity of the WISC-IV FSIQ or general intelli
gence dimension in accounting for academic achievement variance and the poor incremental 
validity of WISC-IV factor index scores beyond the FSIQ or general factor when using either 
hierarchical multiple regression analysis or structural equation modeling (Glutting, Watkins, 
Konold, & McDermott, 2006). 

Future Directions 
As pointed out in the present chapter there are important advantages to using bifactor models 
in evaluating psychological measurements whether one originates at an item level (Chen et 
al., 2012; Reise, 2012) or at the subtest level. While correlated first-order factor structures and 
higher-order structures have most commonly been reported in the literature their limitations are 
noteworthy and rival bifactor models should be routinely examined and tested against oblique 
first-order and higher-order structures to fully understand the dimensionality of an instrument. 
Understanding where item or subtest variance resides is critical in order for researchers and 
clinicians to adequately judge the value of various scores (global composite versus specific 
group). Further, estimation of model-based reliabilities (wh and ws) should also be routinely 
reported in order for researchers and clinicians to judge the merits of the various composite or 
factor based scores. Bifactor models (EFA and CFA) and omega estimates need to be reported 
in studies in the peer-reviewed literature as well as in test technical manuals where such indi
ces and analyses are conspicuously absent even when explicitly and repeatedly implored (see 
Canivez, 2010; Canivez, 2014b; Canivez & Kush, 2013; Canivez & Watkins, 2016). 

As noted earlier the SL procedure contains a potential problem of proportionality constraints 
that may limit its accuracy or utility (Brunner et al., 2012; Chen, West, & Sousa, 2006; Jen
nrich & Bentler, 2011; Reise, 2012; Yung et al., 1999). Reise (2012) described alternative 
exploratory bifactor methods (e.g., target bifactor rotations [Reise et al., 2011] and analytic 
bifactor rotations [Jennrich & Bentler, 2011, 2012]) that avoid the proportionality constraints 
of the SL procedure and these will likely be further examined in comparison to the most often 
used SL transformation procedure. It is hoped that these alternatives become integrated in 
standard statistical software to facilitate use. 

One problem that has been documented in standard CFA procedures is that paths from latent 
constructs to subtests or indicators that are not theoretically associated are set to zero while 
it is understood that such paths are typically not zero but may be small. It was shown by 
Asparouhov and Muthen (2009) that when such paths are not zero such as when tests have 
complex (not simple) structure, setting such paths to zero has significant consequences for 
inaccurate parameter estimates that have consequences for decisions regarding latent models 
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(see Canivez, 2011; Kranzler & Keith, 1999). Distortions produced by CFA when test subtests 
substantially cross-load may benefit from methods such as Exploratory Structural Equation 
Modeling (E-SEM; Asparouhov & Muthen, 2009) or Bayesian structural equation modeling 
(Golay et al., 2013) where such paths are not set to zero. Further examination of E-SEM and 
Bayesian SEM with bifactor models will also be instructive. 

Within the test development community it is imperative that test authors and publishers exam
ine and report rival bifactor models in comparison to oblique first-order and higher-order struc
tures in test technical manuals as a matter of routine to provide clinicians ample evidence sup
porting recommended interpretations of scores. While Carroll ( 1995) insisted on explication of 
the SL orthogonalization in consideration of the multidimensionality of intelligence tests and 
resulting explication of subtest variance estimates associated with broad general and specific 
group factors, test publishers have ignored this admonition. Reporting O\ and ws should also be 
routinely reported to provide more appropriate estimates of composite score reliabilities that 
would further assist in researcher and clinician judgments as to which scores were adequately 
supported for interpretation. 
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